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Abstract

We explore connections on R4 and the Yang-Mills equations arising from minimizing
a quantity known as action. We study solutions to these equations possessing nonzero
action, known as instantons, and demonstrate a method to construct all instantons
on R4 with dimension n and topological charge k. This is the ADHM construction of
Atiyah et al.

1 Motivation

In this course we have seen examples of geometrization: the association of geometric structure
to an underlying algebraic structure. We’e seen that categorification of slq(2,C) gives rise
to cohomology rings of Grassmanians. In a similar vein, more general affine Lie algebras
ĝ give rise to geometric spaces that can be understood as moduli spaces of instantons on
asymptotically-locally-euclidean (ALE) spaces C2/Γ, in one-to-one correspondence with the
extended Affine Dynkin diagrams.

We give an introduction to instanton construction first in the simple case of C2 ∼= R4.
Even in this simple case, we will see how this theory is deeply connected to affine Lie algebras,
Hilbert schemes, and quiver varieties.
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2 Yang Mills Instantons on R4

2.1 Connection and Curvature Forms

Definition 2.1. A Hermitian vector bundle π : E → M over a base space M is a
complex vector bundle over M equipped with a Hermitian inner product on each fiber.

Yang Mills theory on M concerns itself with the metric-compatible connections A on
E.

Definition 2.2 (Connection on a Vector Bundle). A connection A on a vector bundle π :
E →M of rank n is a gl(n)-valued 1-form

For a Hermitian bundle, we restrict to u(n), to work with only metric-compatible con-
nections. Each such connection A ∈ A is a u(n)-valued 1-form acting on E by ρ.

Definition 2.3 (Covariant Exterior Derivative). For a given connectionA ∈ Ω1(M, u(n)),
we obtain a corresponding differential operator on M :

dA := d + ρ(A) (1)

Observation 2.4. In coordinate language, we can write:

(dA)µ = ∂µ + ρ(Aµ) (2)

We can then define the curvature 2-form by having this derivative act on its own con-
nection 1-form

Definition 2.5 (Curvature/Field-Strength 2-form).

F := dAA = dA+ A ∧ A

= dA+
1

2
[A,A]

(3)

Observation 2.6. In coordinate language, we can write:

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ] (4)

s.t. F =
1

2
Fµνdx

µ ∧ dxν (5)

We conclude with an identity that can be checked by direct computation

Proposition 2.7 (Bianchi Identity).

dAF = 0 (6)
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2.2 The Action

For our purposes, M = R4 will be the manifold in question. In particular R4 has Riemannian
structure, so we are given the Hodge-star operator

? : Ωk → Ωn−k.

We define the action, from which we will obtain all information about the dynamics, by:

SE[A] = −
∫
M

Tr(F ∧ ?F ) (7)

Proposition 2.8. Tr(F ∧ ?F ) is globally-defined and gauge invariant

Proof. This follows directly from the cyclic properties of the trace, and the transformation
laws on F making it transform under the adjoint representation.

We want to find A so that SE[A] is a minimum. To do this, we use standard calculus of
variations. Consider a local perturbation A+ tα

F [A+ tα] = d(A+ tα) + A ∧ A+ t[A,α] +O(t2)

= F [A] + t(dα + [A,α]) +O(t2)

= F [A] + dAα +O(t2)

(8)

so that to order t:

||F [A+ tα]||2 = ||F [A+ tα]||2 + 2t(F [A], dAα)

⇒ (F [A], dAα) = 0 ∀α
(9)

By taking adjoints, this gives:
⇒ ?dA ? F [A] = 0

⇒ dA ? F = 0
(10)

This, together with the tautological Bianchi identity: dAF = 0 form the Yang-Mills equa-
tions. These equations are very difficult to solve in all but abelian gauges, where they become
linear.

2.3 Instantons and Topological Charge

Proposition 2.9. Let dimM = 4. Then
∫
M

Tr(F ∧ F ) is independent of changes in A.

Proof. Following the same variational procedure will give us dAF , which is zero always,
independent of any condition on A.

We define the topological charge k of the theory by

k := − 1

8π2

∫
M

Tr(F ∧ F ) (11)

Proposition 2.10. When M = S4, we have that k is an integer.
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Proof. The proof lies in simple ideas from Chern classes and classifying bundles over S4. It
establishes a one-to-one correspondence between the global topology type of the bundle E
over S4 and the topological charge.

Now note that on R4, we have ?? = 1 . This means that ? has eigenvalues ±1 and so
Ω2(U, g) splits as a direct sum of two orthogonal spaces:

Ω2(R2, u(n)) = Ω2
+ ⊕ Ω2

− (12)

called self-dual and anti-self-dual spaces respectively.
We can “symmetrize” any form to become a sum of a self-dual and an anti-self dual one.

In particular, if we write:
F = F+ + F− (13)

then we have

−8π2k =

∫
M

Tr[(F+ + F−) ∧ (F+ + F−)]dVol

=

∫
M

Tr[(F+) ∧ (F+)]dVol +

∫
M

Tr[(F−) ∧ (F−)]dVol

=

∫
M

||F+||2 dVol−
∫
M

||F−||2 dVol

(14)

Note that the absolute value of this gives:

8π2k ≤
∫
M

||F ||2 = |SA[F ]| (15)

Proposition 2.11. The action is bounded below by this topological charge and is in fact
equal to it exactly when one of F+ = 0 or F− = 0.

We call a solution an instanton of the theory. Its action is equal to the topological charge,
and in fact we call this the instanton number when appropriate. We are interested in the
space of instantons modulo gauge equivalence

Definition 2.12. The gauge group G of all metric-compatible transformation on E, re-
stricts to SU(n) at each point. Two connections A1, A2 are Gauge equivalent if they differ
by an element in G. We are interested in the space of connections modulo gauge.

Instantons on R4 must have that F is either self-dual or anti-self-dual. In the latter case:

?F = − ? F (16)

This equation is much simpler to solve than the equation of motion dA ? F = 0. The
anti-self-duality (ASD) equations can be written out explicitly:

F12 + F34 = 0

F14 + F23 = 0

F13 + F42 = 0

(17)
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This can also be written in terms of commutators of the covariant derivatives. If we denote
(dA)µ simply by Dµ then Fµν = (dA)µ(dA)ν = [Dµ, Dν ].

[D1, D2] + [D3, D4] = 0

[D1, D4] + [D2, D3] = 0

[D1, D3] + [D4, D2] = 0

(18)

Proposition 2.13. There are no instantons on Minkowski space R3,1.

Proof. ?? = −1 on Minkowski space, so ? has eigenvalues ±i, meaning the duality equations
would require ?F = ±iF , but F ∈ Ω2(R4, u(n)) is a real object.

Proposition 2.14. For all connections on a given vector bundle E, the instanton number
is an invariant.

Proof. This follows since for instantons SA = 8πk is independent of the connection.

Corollary 2.15. There are no instantons when G is abelian.

Proof. F = dA⇒ ||F || = (?dA, dA) = (δ ? A, dA) = (?A, d2A) = 0

We then have two invariants to note: n and k. We will be especially interested in the
moduli space of all instantons for specific n and k (modulo gauge). From now on, we will
focus specifically on anti-self-dual (ASD) instantons.

MASD(n, k)

Self-dual instantons can be constructed in a straightforward one-to-one manner from the
ASD instantons.

There is one subtlety: For k to be finite, we need F to vanish sufficiently quickly. This
gives a bound for |F | = |dAA(x)| = O(|x|−4) for large x. This further gives a constraint on
the gauge group G as x→∞ to have locally trivial structure. Instantons with this condition
on their behaviour and gauge group are called framed instantons.

We say that in a neighborhood of infinity of S4, the gauge group element must give a
section of the bundle E that has a local trivialization Φ : E∞ → Cn. We denote the moduli
space of framed instantons by

Mfr
ASD(n, k)
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3 The ADHM Construction

3.1 The Data

Let x1, x2, x3, x4 parameterize a R4, and write this as C2 using z1 = x2 + ix1, z2 = x4 + ix3.
We can then write all the (dA)µ (from now on just Dµ) . Moreover in terms of the complex
coordinates, we get

D1 =
1

2
(D2 − iD1)

D2 =
1

2
(D4 − iD3)

(19)

We can express anti-self duality of Fµν in terms of these Dµ through two equations:

[D1,D2] = 0

[D1,D†1] + [D2,D†2] = 0
(20)

The idea behind ADHM is to convert these Di to matrices Bi in a method akin to taking
“Fourier transforms”, and adding source terms depending on k.

Definition 3.1 (ADHM Data). Let U be a 4-dimensional space with complex structure. An
ADHM System on U is a set of linear data:

1. Vector spaces V,W over C of dimensions k, n respectively.

2. Complex k × k matrices B1, B2, a k × n matrix I, and an n× k matrix J .

We can see this diagrammatically by the following doubled, framed quiver:

W V
I

J

B1

B2

Definition 3.2 (ADHM System). A set of ADHM Data is an ADHM system if it satisfies
the following contraints:

1. The ADHM equations:

[B1, B2] + IJ = 0

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0

(21)

These quantities are called real and complex moment maps, respectively.
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2. For any two x, y ∈ C2 with x = (z1, z2), y = (w1, w2), the map:

αx,y =

 w2J − w1I
†

−w2B1 − w1B
†
2 − z1

w2B2 − w1B
†
1 + z2

 (22)

is injective from V to W ⊕ (V ⊗ U) while

βx,y =
(
w2I + w1J

† w2B2 − w1B
†
1 + z2 w2B1 + w1B

†
2 + z1

)
(23)

is surjective from W ⊕ (V ⊗ C2) to V .

It’s worth noting that W ⊕ (V ⊗ C2) ∼= W ⊕ V ⊕ V .

Lemma 3.3. If (B1, B2, I, J) satisfy the above conditions, then for g ∈ U(k), we get

(gB1g
−1, gB2g

−1, gI, Jg−1) (24)

also satisfy the above conditions.

Thus we care about solutions to these equations modulo U(V ).

Proof. It’s a quick check through direct algebra that the equations are preserved.

Proposition 3.4. The ADHM equations are satisfied iff

V
αx,y−−→ W ⊕ (V ⊗ C2)

βx,y−−→ V (25)

is a complex

Proof. We need both βα = 0 as well as surjectivity of β and injectivity of α. The actual
equation βα = 0 reduces exactly to a quadratic polynomial in the w1, w2 with the two ASD
equations emerging as coefficients.

Observation 3.5. This can be viewed as a complex on the trivial vector bundles V,W ⊕V ⊕ V
over C2

V
α−→W ⊕V ⊕ V β−→ V

Now because we have Hermitian structure on each of W,V, and U , we have hermitian
structure on the space we are interested. We can thus define adjoints α†, β†. In particular the
Hermitian structure gives us canonical projection operators Pβ onto ker β and Pα (im α)⊥ =
kerα so that Px = Pβ,xPα,x is then a projection onto im α⊥ ∩ ker β ∼= ker β/im α.

The above proposition also implies

∆†x,y :=

(
βx,y
α†x,y

)
: W ⊕ (V ⊗ C2)→ V × V (26)

is a surjection. Explicitly:

∆†x,y =

(
w2I + w1J

† w2B2 − w1B
†
1 + z2 w2B1 + w1B

†
2 + z1

−w̄1I + w̄2J
† −w̄1B2 − w̄2B

†
1 − z̄1 −w̄1B1 + w̄2B2 + z̄2

)
(27)
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Moreover, there is an adjoint operator to ∆† on these bundles:

∆ :=
(
β† α

)
=

 w̄2I
† + w̄1J w2J − w1I

†

w̄2B
†
2 − w̄1B1 + z̄2 −w2B1 − w1B

†
2 − z1

w̄2B
†
1 + w̄1B2 + z̄1 w2B2 − w1B

†
1 + z2

 (28)

More compactly, if we write

a =

 I† J

B†2 −B1

B†1 B2

 , b =

 0 0
Ik 0
0 Ik

 (29)

then
∆ = aw + bz (30)

when we write w and z as quaternions in this space by associating to a complex pair (q1, q2) =
q ∈ C2 the quaternionic operator:

q ↔
(
q̄2 −q1
q̄1 q2

)
(31)

for any q1, q2 ∈ C. This structure is compatible with the operator R:

Proposition 3.6. ∆†xq,yq = q̄∆†x,y

Proof. We have that
∆†x,y = (awq + bzq)†

= q†(aw + bz)

= q†∆†
(32)

Define the bundle vector E at (x, y) as the vector space corresponding to the kernel of
the ∆† map at (x, y).

Corollary 3.7. Ex,y = Exq,yq, meaning x, y are projective coordinates over the quaternions.

The above makes E a bundle on the projective space P1(H) ∼= S4. On this compact
space, we can calculate topological charge.

Because of this symmetry, we can specialize to the case y = 1, i.e. (w1, w2) = (0, 1) in
the ADHM equations. This simplifies the operator ∆† to

∆† =

(
I B2 + z2 B1 + z1
J† −B̄†1 − z̄1 B̄†2 + z̄2

)
(33)

Solutions to ADHM correspond to Ψ such that

∆†Ψ = 0. (34)
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It is easy to see that

∆†∆ =

(
f−1 0
0 f−1

)
(35)

for some Hermitian f . We can also construct an orthonormal matrix M whose columns span
ker ∆†. Clearly then:

∆†M = 0.

The set of solutions Ψ to ∆†Ψ = 0 gives rise to M and gives a connection:

M †dM.

We can then define the projection operator:

Q := ∆f∆† (36)

as well as
P := MM † (37)

Lemma 3.8. P +Q = 1. That is, P projects into the null space of ∆†.

Proposition 3.9. This gives rise to a connection A = M †dM

Proof. Take s a section so that Ms gives a section on E = ker ∆†, then

Mds+MAs = dA(Ms)

= Pd(Ms)

= MM †d(Ms)

= M(ds+ (M †dM)s)

(38)

giving our result.

Proposition 3.10. A ∈ su(n).

Proof. A† = (dM)†M = −M †dM because of normalization: M †M = 1.

Proposition 3.11. A is anti-self-dual.

Proof.
Fµν = ∂[µAν] + A[µAν]

= ∂[µ(M †∂ν]M) + (M †∂[µM)(M †∂ν]M)

= (∂[µM
†)(∂ν]M) + (M †∂[µM)(M †∂ν]M)

= (∂[µM
†)(∂ν]M) + (∂[µM

†)M(M †∂ν]M)

= (∂[µM
†)(1− P )(∂ν]M)

= (∂[µM
†)Q(∂ν]M)

= (∂[µM
†)∆f∆†(∂ν]M)

= M †(∂[µ∆)f(∂ν]∆
†)M

(39)
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The term involving the derivatives of these ∆ operators

(∂[µ∆)f(∂ν]∆
†) (40)

can be reduced to the action of sigma matrices −iσµ on f :

∂µ∆ = −iσµ
⇒ (∂[µ∆)f(∂ν]∆

†) = (−iσ[µ ⊗ Ik)(I2 ⊗ f)(−iσ†ν] ⊗ Ik)
= −2iσµν ⊗ f

(41)

And we know ?σµν = −σµν This illusatrates how the underlying quaternionic structure gives
rise to rise to ASD solutions.

Proposition 3.12. The topological charge of E when considered as a bundle over S4 is −k

Proof. (Sketch) Note that W ⊕ (V ⊗ U) ∼= Cn+2k = E ⊕ E⊥. Since E has dimension n this leaves
a complement of complex dimension 2k. This can be identified as k one-dimensional copies of the
quaternions, so that W ⊕ (V ⊗ U) decomposes as a direct sum

E ⊕H⊕k (42)

so corresponds to k quaternion line bundles over S4. In fact this turns out to be the tautological
line bundle Σ.

Now from simple Chern theory, we know:

0 = c2(Cn+2k) = c2(E) + kc2(Σ). (43)

But the second chern number of a quaternionic tautological bundle is 1 (analogous to how the first
chern number of a complex tautological bundle is 1). This gives c2(E) = −k.

Corollary 3.13. A is a framed connection, and the topological charge is −k.

Proof. We know A over R4 extends to a connection over S4 = P1(H).
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