Instantons and the ADHM Construction Lecture 1

Alex Atanasov

December 6, 2016

Abstract

We explore connections on \mathbb{R}^4 and the Yang-Mills equations arising from minimizing a quantity known as action. We study solutions to these equations possessing nonzero action, known as instantons, and demonstrate a method to construct all instantons on \mathbb{R}^4 with dimension n and topological charge k. This is the ADHM construction of Atiyah et al.

1 Motivation

In this course we have seen examples of geometrization: the association of geometric structure to an underlying algebraic structure. We'e seen that categorification of $\mathfrak{sl}_q(2,\mathbb{C})$ gives rise to cohomology rings of Grassmanians. In a similar vein, more general affine Lie algebras $\hat{\mathfrak{g}}$ give rise to geometric spaces that can be understood as moduli spaces of instantons on asymptotically-locally-euclidean (ALE) spaces \mathbb{C}^2/Γ , in one-to-one correspondence with the extended Affine Dynkin diagrams.

We give an introduction to instanton construction first in the simple case of $\mathbb{C}^2 \cong \mathbb{R}^4$. Even in this simple case, we will see how this theory is deeply connected to affine Lie algebras, Hilbert schemes, and quiver varieties.

2 Yang Mills Instantons on \mathbb{R}^4

2.1 Connection and Curvature Forms

Definition 2.1. A Hermitian vector bundle $\pi : E \to M$ over a base space M is a complex vector bundle over M equipped with a Hermitian inner product on each fiber.

Yang Mills theory on M concerns itself with the metric-compatible **connections** A on E.

Definition 2.2 (Connection on a Vector Bundle). A connection A on a vector bundle π : $E \to M$ of rank n is a $\mathfrak{gl}(n)$ -valued 1-form

For a Hermitian bundle, we restrict to $\mathfrak{u}(n)$, to work with only metric-compatible connections. Each such connection $A \in \mathcal{A}$ is a $\mathfrak{u}(n)$ -valued 1-form acting on E by ρ .

Definition 2.3 (Covariant Exterior Derivative). For a given connection $A \in \Omega^1(M, \mathfrak{u}(n))$, we obtain a corresponding differential operator on M:

$$\mathbf{d}_A := \mathbf{d} + \rho(A) \tag{1}$$

Observation 2.4. In coordinate language, we can write:

$$(\mathbf{d}_A)_\mu = \partial_\mu + \rho(A_\mu) \tag{2}$$

We can then define the **curvature** 2-form by having this derivative act on its own connection 1-form

Definition 2.5 (Curvature/Field-Strength 2-form).

$$F := d_A A = dA + A \wedge A$$
$$= dA + \frac{1}{2}[A, A]$$
(3)

Observation 2.6. In coordinate language, we can write:

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu} + [A_{\mu}, A_{\nu}]$$
(4)

s.t.
$$F = \frac{1}{2} F_{\mu\nu} dx^{\mu} \wedge dx^{\nu}$$
 (5)

We conclude with an identity that can be checked by direct computation

Proposition 2.7 (Bianchi Identity).

$$\mathbf{d}_A F = 0 \tag{6}$$

2.2 The Action

For our purposes, $M = \mathbb{R}^4$ will be the manifold in question. In particular \mathbb{R}^4 has Riemannian structure, so we are given the Hodge-star operator

$$\star: \Omega^k \to \Omega^{n-k}.$$

We define the **action**, from which we will obtain all information about the dynamics, by:

$$S_E[\mathcal{A}] = -\int_M \operatorname{Tr}(F \wedge \star F) \tag{7}$$

Proposition 2.8. $Tr(F \land \star F)$ is globally-defined and gauge invariant

Proof. This follows directly from the cyclic properties of the trace, and the transformation laws on F making it transform under the adjoint representation.

We want to find A so that $S_E[\mathcal{A}]$ is a minimum. To do this, we use standard calculus of variations. Consider a local perturbation $A + t\alpha$

$$F[A + t\alpha] = d(A + t\alpha) + A \wedge A + t[A, \alpha] + O(t^2)$$

= $F[A] + t(d\alpha + [A, \alpha]) + O(t^2)$
= $F[A] + d_A \alpha + O(t^2)$ (8)

so that to order t:

$$||F[A + t\alpha]||^{2} = ||F[A + t\alpha]||^{2} + 2t(F[A], \mathbf{d}_{A}\alpha)$$

$$\Rightarrow (F[A], \mathbf{d}_{A}\alpha) = 0 \ \forall \alpha$$
(9)

By taking adjoints, this gives:

$$\Rightarrow \star \mathbf{d}_A \star F[A] = 0$$

$$\Rightarrow \mathbf{d}_A \star F = 0$$
 (10)

This, together with the tautological Bianchi identity: $d_A F = 0$ form the Yang-Mills equations. These equations are very difficult to solve in all but abelian gauges, where they become linear.

2.3 Instantons and Topological Charge

Proposition 2.9. Let dim M = 4. Then $\int_M \operatorname{Tr}(F \wedge F)$ is independent of changes in A.

Proof. Following the same variational procedure will give us $d_{\mathcal{A}}F$, which is zero always, independent of any condition on A.

We define the **topological charge** k of the theory by

$$k := -\frac{1}{8\pi^2} \int_M \operatorname{Tr}(F \wedge F) \tag{11}$$

Proposition 2.10. When $M = S^4$, we have that k is an integer.

Proof. The proof lies in simple ideas from Chern classes and classifying bundles over S^4 . It establishes a one-to-one correspondence between the global topology type of the bundle E over S^4 and the topological charge.

Now note that on \mathbb{R}^4 , we have $\star \star = 1$. This means that \star has eigenvalues ± 1 and so $\Omega^2(U, \mathfrak{g})$ splits as a direct sum of two orthogonal spaces:

$$\Omega^2(\mathbb{R}^2, \mathfrak{u}(n)) = \Omega^2_+ \oplus \Omega^2_- \tag{12}$$

called **self-dual** and **anti-self-dual** spaces respectively.

We can "symmetrize" any form to become a sum of a self-dual and an anti-self dual one. In particular, if we write:

$$F = F_{+} + F_{-} \tag{13}$$

 \square

then we have

$$-8\pi^{2}k = \int_{M} \text{Tr}[(F_{+} + F_{-}) \wedge (F_{+} + F_{-})] d\text{Vol}$$

=
$$\int_{M} \text{Tr}[(F_{+}) \wedge (F_{+})] d\text{Vol} + \int_{M} \text{Tr}[(F_{-}) \wedge (F_{-})] d\text{Vol}$$

=
$$\int_{M} ||F_{+}||^{2} d\text{Vol} - \int_{M} ||F_{-}||^{2} d\text{Vol}$$
 (14)

Note that the absolute value of this gives:

$$8\pi^2 k \le \int_M ||F||^2 = |S_A[F]| \tag{15}$$

Proposition 2.11. The action is bounded below by this topological charge and is in fact equal to it exactly when one of $F_+ = 0$ or $F_- = 0$.

We call a solution an **instanton** of the theory. Its action is equal to the topological charge, and in fact we call this the **instanton number** when appropriate. We are interested in the space of instantons modulo gauge equivalence

Definition 2.12. The **gauge group** \mathcal{G} of all metric-compatible transformation on E, restricts to SU(n) at each point. Two connections A_1, A_2 are Gauge equivalent if they differ by an element in \mathcal{G} . We are interested in the space of connections modulo gauge.

Instantons on \mathbb{R}^4 must have that F is either self-dual or anti-self-dual. In the latter case:

$$\star F = -\star F \tag{16}$$

This equation is much simpler to solve than the equation of motion $d_A \star F = 0$. The anti-self-duality (ASD) equations can be written out explicitly:

$$F_{12} + F_{34} = 0$$

$$F_{14} + F_{23} = 0$$

$$F_{13} + F_{42} = 0$$
(17)

This can also be written in terms of commutators of the covariant derivatives. If we denote $(d_A)_{\mu}$ simply by D_{μ} then $F_{\mu\nu} = (d_A)_{\mu} (d_A)_{\nu} = [D_{\mu}, D_{\nu}].$

$$[D_1, D_2] + [D_3, D_4] = 0$$

$$[D_1, D_4] + [D_2, D_3] = 0$$

$$[D_1, D_3] + [D_4, D_2] = 0$$
(18)

Proposition 2.13. There are no instantons on Minkowski space $\mathbb{R}^{3,1}$.

Proof. $\star \star = -1$ on Minkowski space, so \star has eigenvalues $\pm i$, meaning the duality equations would require $\star F = \pm iF$, but $F \in \Omega^2(\mathbb{R}^4, \mathfrak{u}(n))$ is a real object. \Box

Proposition 2.14. For all connections on a given vector bundle E, the instanton number is an invariant.

Proof. This follows since for instantons $S_{\mathcal{A}} = 8\pi k$ is independent of the connection.

Corollary 2.15. There are no instantons when G is abelian.

Proof.
$$F = dA \Rightarrow ||F|| = (\star dA, dA) = (\delta \star A, dA) = (\star A, d^2A) = 0$$

We then have two invariants to note: n and k. We will be especially interested in the moduli space of all instantons for specific n and k (modulo gauge). From now on, we will focus specifically on anti-self-dual (ASD) instantons.

 $\mathcal{M}_{ASD}(n,k)$

Self-dual instantons can be constructed in a straightforward one-to-one manner from the ASD instantons.

There is one subtlety: For k to be finite, we need F to vanish sufficiently quickly. This gives a bound for $|F| = |d_A A(x)| = O(|x|^{-4})$ for large x. This further gives a constraint on the gauge group \mathcal{G} as $x \to \infty$ to have locally trivial structure. Instantons with this condition on their behaviour and gauge group are called **framed** instantons.

We say that in a neighborhood of infinity of S^4 , the gauge group element must give a section of the bundle E that has a local trivialization $\Phi: E_{\infty} \to \mathbb{C}^n$. We denote the moduli space of framed instantons by

$$\mathcal{M}^{fr}_{ASD}(n,k)$$

3 The ADHM Construction

3.1 The Data

Let x_1, x_2, x_3, x_4 parameterize a \mathbb{R}^4 , and write this as \mathbb{C}^2 using $z_1 = x_2 + ix_1, z_2 = x_4 + ix_3$. We can then write all the $(d_A)_{\mu}$ (from now on just D_{μ}). Moreover in terms of the complex coordinates, we get

$$\mathcal{D}_{1} = \frac{1}{2}(D_{2} - iD_{1})$$

$$\mathcal{D}_{2} = \frac{1}{2}(D_{4} - iD_{3})$$
(19)

We can express anti-self duality of $F_{\mu\nu}$ in terms of these \mathcal{D}_{μ} through two equations:

$$[\mathcal{D}_1, \mathcal{D}_2] = 0$$

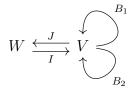
$$[\mathcal{D}_1, \mathcal{D}_1^{\dagger}] + [\mathcal{D}_2, \mathcal{D}_2^{\dagger}] = 0$$
(20)

The idea behind ADHM is to convert these D_i to matrices B_i in a method akin to taking "Fourier transforms", and adding source terms depending on k.

Definition 3.1 (ADHM Data). Let U be a 4-dimensional space with complex structure. An **ADHM System** on U is a set of linear data:

- 1. Vector spaces V, W over \mathbb{C} of dimensions k, n respectively.
- 2. Complex $k \times k$ matrices B_1, B_2 , a $k \times n$ matrix I, and an $n \times k$ matrix J.

We can see this diagrammatically by the following doubled, framed quiver:



Definition 3.2 (ADHM System). A set of ADHM Data is an ADHM system if it satisfies the following contraints:

1. The ADHM equations:

$$[B_1, B_2] + IJ = 0$$

$$[B_1, B_1^{\dagger}] + [B_2, B_2^{\dagger}] + II^{\dagger} - J^{\dagger}J = 0$$
(21)

These quantities are called real and complex moment maps, respectively.

2. For any two $x, y \in \mathbb{C}^2$ with $x = (z_1, z_2), y = (w_1, w_2)$, the map:

$$\alpha_{x,y} = \begin{pmatrix} w_2 J - w_1 I^{\dagger} \\ -w_2 B_1 - w_1 B_2^{\dagger} - z_1 \\ w_2 B_2 - w_1 B_1^{\dagger} + z_2 \end{pmatrix}$$
(22)

is injective from V to $W \oplus (V \otimes U)$ while

$$\beta_{x,y} = \begin{pmatrix} w_2 I + w_1 J^{\dagger} & w_2 B_2 - w_1 B_1^{\dagger} + z_2 & w_2 B_1 + w_1 B_2^{\dagger} + z_1 \end{pmatrix}$$
(23)

is surjective from $W \oplus (V \otimes \mathbb{C}^2)$ to V.

It's worth noting that $W \oplus (V \otimes \mathbb{C}^2) \cong W \oplus V \oplus V$.

Lemma 3.3. If (B_1, B_2, I, J) satisfy the above conditions, then for $g \in U(k)$, we get

$$(gB_1g^{-1}, gB_2g^{-1}, gI, Jg^{-1}) (24)$$

also satisfy the above conditions.

Thus we care about solutions to these equations modulo U(V).

Proof. It's a quick check through direct algebra that the equations are preserved. \Box

Proposition 3.4. The ADHM equations are satisfied iff

$$V \xrightarrow{\alpha_{x,y}} W \oplus (V \otimes \mathbb{C}^2) \xrightarrow{\beta_{x,y}} V \tag{25}$$

is a complex

Proof. We need both $\beta \alpha = 0$ as well as surjectivity of β and injectivity of α . The actual equation $\beta \alpha = 0$ reduces exactly to a quadratic polynomial in the w_1, w_2 with the two ASD equations emerging as coefficients.

Observation 3.5. This can be viewed as a complex on the trivial vector bundles $V, W \oplus V \oplus V$ over \mathbb{C}^2

$$\underline{V} \xrightarrow{\alpha} \underline{W \oplus V \oplus V} \xrightarrow{\beta} \underline{V}$$

Now because we have Hermitian structure on each of W, V, and U, we have hermitian structure on the space we are interested. We can thus define adjoints $\alpha^{\dagger}, \beta^{\dagger}$. In particular the Hermitian structure gives us canonical projection operators P_{β} onto ker β and P_{α} (im α)^{\perp} = ker α so that $P_x = P_{\beta,x}P_{\alpha,x}$ is then a projection onto im $\alpha^{\perp} \cap \ker \beta \cong \ker \beta/\operatorname{im} \alpha$.

The above proposition also implies

$$\Delta_{x,y}^{\dagger} := \begin{pmatrix} \beta_{x,y} \\ \alpha_{x,y}^{\dagger} \end{pmatrix} : W \oplus (V \otimes \mathbb{C}^2) \to V \times V$$
(26)

is a surjection. Explicitly:

$$\Delta_{x,y}^{\dagger} = \begin{pmatrix} w_2 I + w_1 J^{\dagger} & w_2 B_2 - w_1 B_1^{\dagger} + z_2 & w_2 B_1 + w_1 B_2^{\dagger} + z_1 \\ -\bar{w}_1 I + \bar{w}_2 J^{\dagger} & -\bar{w}_1 B_2 - \bar{w}_2 B_1^{\dagger} - \bar{z}_1 & -\bar{w}_1 B_1 + \bar{w}_2 B_2 + \bar{z}_2 \end{pmatrix}$$
(27)

Moreover, there is an adjoint operator to Δ^{\dagger} on these bundles:

$$\Delta := \begin{pmatrix} \beta^{\dagger} & \alpha \end{pmatrix} = \begin{pmatrix} \bar{w}_2 I^{\dagger} + \bar{w}_1 J & w_2 J - w_1 I^{\dagger} \\ \bar{w}_2 B_2^{\dagger} - \bar{w}_1 B_1 + \bar{z}_2 & -w_2 B_1 - w_1 B_2^{\dagger} - z_1 \\ \bar{w}_2 B_1^{\dagger} + \bar{w}_1 B_2 + \bar{z}_1 & w_2 B_2 - w_1 B_1^{\dagger} + z_2 \end{pmatrix}$$
(28)

More compactly, if we write

$$a = \begin{pmatrix} I^{\dagger} & J \\ B_2^{\dagger} & -B_1 \\ B_1^{\dagger} & B_2 \end{pmatrix}, \ b = \begin{pmatrix} 0 & 0 \\ I_k & 0 \\ 0 & I_k \end{pmatrix}$$
(29)

then

$$\Delta = aw + bz \tag{30}$$

when we write w and z as quaternions in this space by associating to a complex pair $(q_1, q_2) = q \in \mathbb{C}^2$ the quaternionic operator:

$$q \leftrightarrow \begin{pmatrix} \bar{q}_2 & -q_1 \\ \bar{q}_1 & q_2 \end{pmatrix} \tag{31}$$

for any $q_1, q_2 \in \mathbb{C}$. This structure is compatible with the operator R:

Proposition 3.6. $\Delta^{\dagger}_{xq,yq} = \bar{q} \Delta^{\dagger}_{x,y}$

Proof. We have that

$$\Delta_{x,y}^{\dagger} = (awq + bzq)^{\dagger}$$

= $q^{\dagger}(aw + bz)$
= $q^{\dagger}\Delta^{\dagger}$ (32)

Define the bundle vector E at (x, y) as the vector space corresponding to the kernel of the Δ^{\dagger} map at (x, y).

Corollary 3.7. $E_{x,y} = E_{xq,yq}$, meaning x, y are projective coordinates over the quaternions.

The above makes E a bundle on the projective space $\mathbb{P}^1(\mathbb{H}) \cong S^4$. On this compact space, we can calculate topological charge.

Because of this symmetry, we can specialize to the case y = 1, i.e. $(w_1, w_2) = (0, 1)$ in the ADHM equations. This simplifies the operator Δ^{\dagger} to

$$\Delta^{\dagger} = \begin{pmatrix} I & B_2 + z_2 & B_1 + z_1 \\ J^{\dagger} & -\bar{B}_1^{\dagger} - \bar{z}_1 & \bar{B}_2^{\dagger} + \bar{z}_2 \end{pmatrix}$$
(33)

Solutions to ADHM correspond to Ψ such that

$$\Delta^{\dagger}\Psi = 0. \tag{34}$$

It is easy to see that

$$\Delta^{\dagger}\Delta = \begin{pmatrix} f^{-1} & 0\\ 0 & f^{-1} \end{pmatrix} \tag{35}$$

for some Hermitian f. We can also construct an *orthonormal* matrix M whose columns span $\ker \Delta^{\dagger}$. Clearly then:

$$\Delta^{\dagger}M = 0$$

The set of solutions Ψ to $\Delta^{\dagger}\Psi = 0$ gives rise to M and gives a connection:

 $M^{\dagger}dM.$

We can then define the projection operator:

$$Q := \Delta f \Delta^{\dagger} \tag{36}$$

as well as

$$P := M M^{\dagger} \tag{37}$$

Lemma 3.8. P + Q = 1. That is, P projects into the null space of Δ^{\dagger} .

Proposition 3.9. This gives rise to a connection $A = M^{\dagger} dM$

Proof. Take s a section so that Ms gives a section on $E = \ker \Delta^{\dagger}$, then

$$Mds + MAs = d_A(Ms)$$

= $Pd(Ms)$
= $MM^{\dagger}d(Ms)$
= $M(ds + (M^{\dagger}dM)s)$ (38)

giving our result.

Proposition 3.10. $A \in \mathfrak{su}(n)$.

Proof. $A^{\dagger} = (dM)^{\dagger}M = -M^{\dagger}dM$ because of normalization: $M^{\dagger}M = 1$.

Proposition 3.11. A is anti-self-dual.

Proof.

$$F_{\mu\nu} = \partial_{[\mu}A_{\nu]} + A_{[\mu}A_{\nu]}$$

$$= \partial_{[\mu}(M^{\dagger}\partial_{\nu]}M) + (M^{\dagger}\partial_{[\mu}M)(M^{\dagger}\partial_{\nu]}M)$$

$$= (\partial_{[\mu}M^{\dagger})(\partial_{\nu]}M) + (M^{\dagger}\partial_{[\mu}M)(M^{\dagger}\partial_{\nu]}M)$$

$$= (\partial_{[\mu}M^{\dagger})(\partial_{\nu]}M) + (\partial_{[\mu}M^{\dagger})M(M^{\dagger}\partial_{\nu]}M)$$

$$= (\partial_{[\mu}M^{\dagger})(1 - P)(\partial_{\nu]}M)$$

$$= (\partial_{[\mu}M^{\dagger})\Delta f\Delta^{\dagger}(\partial_{\nu]}M)$$

$$= M^{\dagger}(\partial_{[\mu}\Delta)f(\partial_{\nu]}\Delta^{\dagger})M$$
(39)

The term involving the derivatives of these Δ operators

$$(\partial_{[\mu}\Delta)f(\partial_{\nu]}\Delta^{\dagger}) \tag{40}$$

can be reduced to the action of sigma matrices $-i\sigma_{\mu}$ on f:

$$\partial_{\mu}\Delta = -i\sigma_{\mu}$$

$$\Rightarrow (\partial_{[\mu}\Delta)f(\partial_{\nu]}\Delta^{\dagger}) = (-i\sigma_{[\mu}\otimes I_{k})(I_{2}\otimes f)(-i\sigma_{\nu]}^{\dagger}\otimes I_{k})$$

$$= -2i\sigma_{\mu\nu}\otimes f$$
(41)

And we know $\star \sigma_{\mu\nu} = -\sigma_{\mu\nu}$ This illusatrates how the underlying quaternionic structure gives rise to rise to ASD solutions.

Proposition 3.12. The topological charge of E when considered as a bundle over S^4 is -k

Proof. (Sketch) Note that $W \oplus (V \otimes U) \cong \mathbb{C}^{n+2k} = E \oplus E^{\perp}$. Since *E* has dimension *n* this leaves a complement of complex dimension 2k. This can be identified as *k* one-dimensional copies of the quaternions, so that $W \oplus (V \otimes U)$ decomposes as a direct sum

$$E \oplus \mathbb{H}^{\oplus k} \tag{42}$$

so corresponds to k quaternion line bundles over S^4 . In fact this turns out to be the **tautological** line bundle Σ .

Now from simple Chern theory, we know:

$$0 = c_2(\mathbb{C}^{n+2k}) = c_2(E) + kc_2(\Sigma).$$
(43)

But the second chern number of a quaternionic tautological bundle is 1 (analogous to how the first chern number of a complex tautological bundle is 1). This gives $c_2(E) = -k$.

Corollary 3.13. A is a framed connection, and the topological charge is -k.

Proof. We know A over \mathbb{R}^4 extends to a connection over $S^4 = \mathbb{P}^1(\mathbb{H})$.

References

- [1] John C Baez and Javier Muniain *Gauge Theory, Knots, and Gravity*: 1994, World Scientific.
- [2] Nick Dorey et al. The Calculus of Many Instantons: 2002, hep-th/0206063
- [3] AJ Lindenhovius Instantons and the ADHM Construction: 2011
- [4] Alexander Kirillov Jr. *Quiver Varieties and Quiver Representations*: 2016: Graduate Studies in Mathematics, AMS.
- [5] Hiraku Nakajima Hilbert Schemes of Points on Surfaces 1991: University Lecture Series, AMS.